Applications of population genetics to animal breeding, from wright, fisher and lush to genomic prediction.
نویسنده
چکیده
Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives' performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher's infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with "genomic selection" is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.
منابع مشابه
Accurate prediction of genetic values for complex traits by whole-genome resequencing.
Whole-genome resequencing technology has improved rapidly during recent years and is expected to improve further such that the sequencing of an entire human genome sequence for $1000 is within reach. Our main aim here is to use whole-genome sequence data for the prediction of genetic values of individuals for complex traits and to explore the accuracy of such predictions. This is relevant for t...
متن کاملComparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model
In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...
متن کاملAccuracy of Genomic Prediction under Different Genetic Architectures and Estimation Methods
The accuracy of genomic breeding value prediction was investigated in various levels of reference population size, trait heritability and the number of quantitative trait locus (QTL). Five Bayesian methods, including Bayesian Ridge regression, BayesA, BayesB, BayesC and Bayesian LASSO, were used to estimate the marker effects for each of 27 scenarios resulted from combining three levels for her...
متن کاملA Comparison of the Sensitivity of the BayesC and Genomic Best Linear Unbiased Prediction(GBLUP) Methods of Estimating Genomic Breeding Values under Different Quantitative Trait Locus(QTL) Model Assumptions
The objective of this study was to compare the accuracy of estimating and predicting breeding values using two diverse approaches, GBLUP and BayesC, using simulated data under different quantitative trait locus(QTL) effect distributions. Data were simulated with three different distributions for the QTL effect which were uniform, normal and gamma (1.66, 0.4). The number of QTL was assumed to be...
متن کاملNutrigenomics and its Applications in Animal Science
Nutrigenomics applies genomic technologies to study how nutrients affect expression of genes. With the advent of the post genomic era and with the use of functional genomic tools, the new strategies for evaluating the effects of nutrition on production efficiency and nutrient utilization are becoming available. Nutrigenomics plays an efficient role in various fields of animal health like nutrit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 196 1 شماره
صفحات -
تاریخ انتشار 2014